Detoxification of azo dyes by a novel pH-versatile, salt-resistant laccase from Streptomyces ipomoea.

نویسندگان

  • José M Molina-Guijarro
  • Juana Pérez
  • José Muñoz-Dorado
  • Francisco Guillén
  • Raquel Moya
  • Manuel Hernández
  • M Enriqueta Arias
چکیده

A newly identified extracellular laccase produced by Streptomyces ipomoea CECT 3341 (SilA) was cloned and overexpressed, and its physicochemical characteristics assessed together with its capability to decolorize and detoxify an azotype dye. Molecular analysis of the deduced sequence revealed that SilA contains a TAT-type signal peptide at the N-terminus and only two cupredoxine domains; this is consistent with reports describing two other Streptomyces laccases but contrasts with most laccases, which contain three cupredoxine domains. The heterologous expression and purification of SilA revealed that the homodimer is the only active form of the enzyme. Its stability at high pH and temperature, together with its resistance to high concentrations of NaCl and to typical laccase inhibitors such as sodium azide confirmed the unique properties of this novel laccase. The range of substrates that SilA is able to oxidize was found to be pH-dependent; at alkaline pH, SilA oxidized a wide range of phenolic compounds, including the syringyl and guayacil moieties derived from lignin. The oxidative potential of this enzyme to use phenolic compounds as natural redox mediators was shown through the coordinated action of SilA and acetosyringone (as mediator), which resulted in the complete detoxification of the azo-type dye Orange II.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Decolorization and biodegradation of reactive sulfonated azo dyes by a newly isolated Brevibacterium sp. strain VN-15

Azo dyes constitute the largest and most versatile class of synthetic dyes used in the textile, pharmaceutical, food and cosmetics industries and represent major components in wastewater from these industrial dying processes. Biological decolorization of azo dyes occurs efficiently under low oxygen to anaerobic conditions. However, this process results in the formation of toxic and carcinogenic...

متن کامل

Application of Face-Centered Central Composite Design (FCCCD) in Optimization of Enzymatic Decolorization of Two Azo Dyes: A Modeling vs. Empirical Comparison

Biological treatment, especially enzymatic methods, can be employed for effective and environmental- friendly treatment of dye effluents. Laccase, belonging to the blue multi-copper oxidases category, can oxidize a wide variety of substrates, especially synthetic dyes. In this study, laccase was used to biodegrade two azo dyes, i.e., Direct Red 23 and Acid Blue 92. Before conducting the exp...

متن کامل

Studies on the laccase-mediated decolorization, kinetic, and microtoxicity of some synthetic azo dyes

BACKGROUND Enzymatic elimination of synthetic dyes, one of the most environmentally hazardous chemicals, has gained a great interest during the two last decades. The present study was performed to evaluate the decolorization and detoxification potential of the purified laccase of Paraconiothyrium variabile in both non-assisted and hydroxybenzotriazole-aided form against six azo dyes. RESULTS ...

متن کامل

Decolorization and detoxification of textile dyes with a laccase from Trametes hirsuta.

Trametes hirsuta and a purified laccase from this organism were able to degrade triarylmethane, indigoid, azo, and anthraquinonic dyes. Initial decolorization velocities depended on the substituents on the phenolic rings of the dyes. Immobilization of the T. hirsuta laccase on alumina enhanced the thermal stabilities of the enzyme and its tolerance against some enzyme inhibitors, such as halide...

متن کامل

Optimization of culture condition for enhanced decolorization and degradation of azo dye reactive violet 1 with concomitant production of ligninolytic enzymes by Ganoderma cupreum AG-1

The strain Ganoderma cupreum AG-1 (Genbank accession no. HQ328947) isolated from the decayed wood was evaluated for its ability to decolorize azo dye reactive violet 1 as well as for the production of ligninolytic enzymes. In the initial decolorization study, the strain was capable of decolorizing 19 different azo dyes. The strain was capable of decolorizing dye over a pH range of 4.5-6 at 30 °...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • International microbiology : the official journal of the Spanish Society for Microbiology

دوره 12 1  شماره 

صفحات  -

تاریخ انتشار 2009